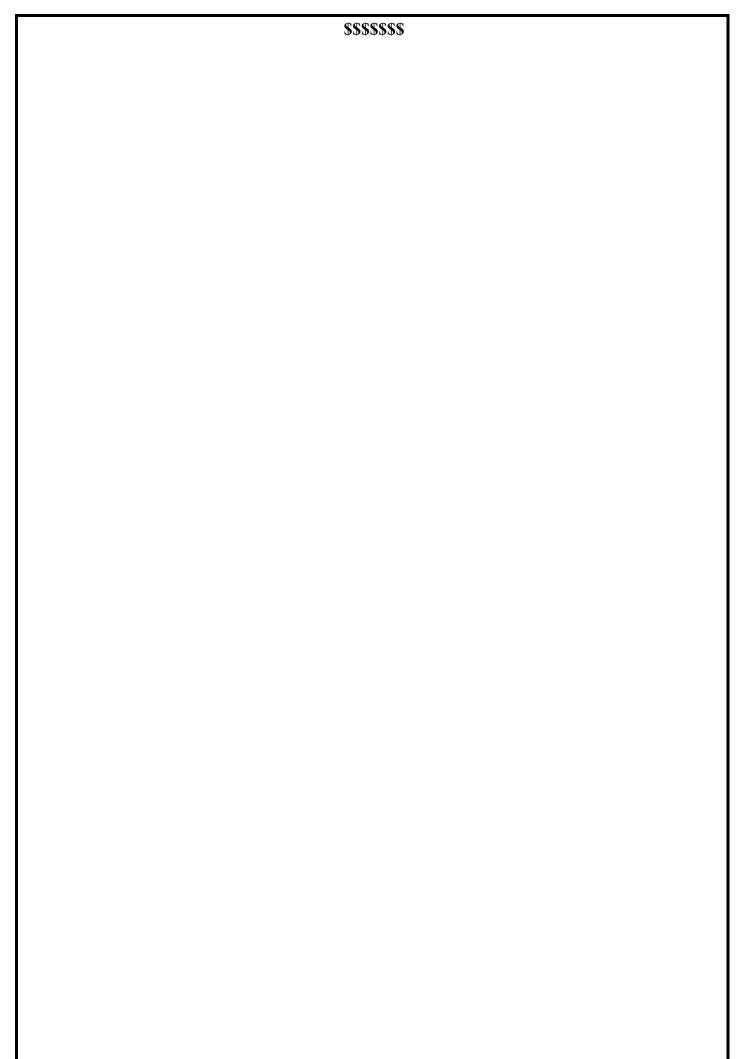
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034


M.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - APRIL 2023

PPH 4502 - NUCLEAR PHYSICS

Date: 03-05-2023	Dept. No.	Max. : 100 Marks
Time: 09:00 AM - 12:00 NO	ON	

	PART - A	(10x 2 = 20 Marks)			
	Answer ALL questions				
1	Calculate the distance of closest approach between a deuteron of energy 3.5 nucleus.	MeV and a Uranium			
2					
3	0 0,				
4	6				
5	State the condition for continuum in compound nucleus energy levels.	100			
6	If the radius of the ₁₃ Al ²⁷ nucleus is estimated to be 3.6 fermi, then find nucleus.	the radius of $_{32}\text{Te}^{125}$			
7	Distinguish between <i>pick-up</i> and <i>stripping</i> nuclear reactions.				
8	What is the characteristic feature of the optical model?				
9	Distinguish between a neutrino and an anti-neutrino.				
10	What are hadrons? Give examples.				
	PART – B	$(4 \times 7.5 = 30 \text{ Marks})$			
Answer any FOUR questions					
11	Provide an account of the various exchange forces in the nucleus.				
12	Enlist the analogies drawn out between the nucleus and a liquid drop.				
13	Derive the four factor formula for controlled chain reactions.				
14	Discuss the different types of beta decay with their corresponding equations.				
15	Explain the classification of elementary particles with a schematic diagram.				
16	Derive the Levy's formula for the determination of atomic masses.				
	PART – C	$(4 \times 12.5 = 50 \text{ Marks})$			
Answer any FOUR questions					
17	Discuss in detail the two-nucleon potential analysis and hence obtain express depth of the potential.	sions for the range and			
18	Obtain the Weizsacker's semi empirical mass formula and discuss it in detail.				
19	Derive the Breit-Wigner dispersion formula for nuclear cross section.				
20	Discuss the Fermi and Gamow Teller selection rules for beta transitions.				
21	State and elucidate with suitable examples the CPT invariance theorem.				
22	Discuss elaborately, the design and working of a nuclear reactor.				
	·				

